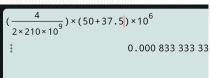
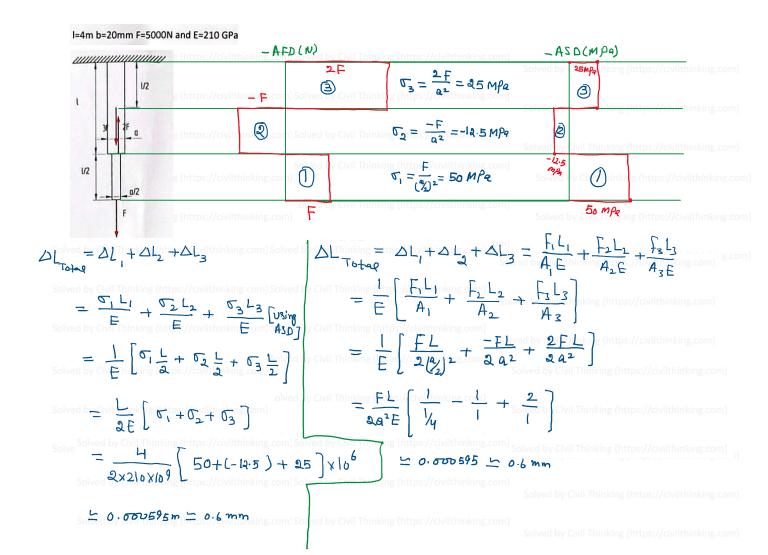

Draw a graph of tensile or compressive forces and stresses and calculate the total deformation of a square steel bar with the given data I=4m b=20mm F=5000N and E=210 GPa for the following cases:


$$\int_{T_0 \to \infty} \frac{F_1 L_1}{A_1 \varepsilon_1} + \frac{F_2 L_2}{A_2 \varepsilon_2} + \frac{F_3 L_3}{A_3 \varepsilon_3}$$


$$= \frac{F_1 L_2}{\left(\frac{\alpha}{2}\right)^2 \times E} + \frac{3F_1 L_2}{\alpha^2 \varepsilon} + 0$$

$$= \frac{F_2 L_2}{\alpha^2 \varepsilon_1} + \frac{3/2}{\alpha^2 \varepsilon_2} + 0$$
Solved by Civil Thinking the solved

Sols
$$\left(\frac{5000\times4}{20^2\times10^{-6}\times210\times10^9}\right)\times\left(\frac{\frac{1}{2}}{\frac{1}{4}}+\frac{\frac{3}{2}}{1}\right)$$

 \vdots 0.000 833 333 33

Solved by Civil Thinking (https://civilthinking.com)
$$=\frac{\Gamma}{2}\frac{L}{2}\frac{L}{2}+\frac{3}{2}\frac{L}{2}$$
 and $=\frac{3}{2}\frac{L}{2}\frac{L}{2}+\frac{3}{2}\frac{L}{2}\frac{L}{2}+\frac{3}{2}\frac{L}{2}\frac{L}{2}$ and $=\frac{1}{2}\frac{L}{2$

This problem was solved by Civil Thinking (https://civilthinking.com)

If you need solutions of Solid Mechanics/ Strength of Materials problems or any other Civil Engineering subject, contact us at: solutions@civilthinking.com

Or submit your problem directly here:

https://civilthinking.com/getproblemsolutions

Subjects We Cover:

- ✓ Structural Analysis
- Fluid Mechanics, Solid Mechanics/Statics, Strength of Materials
- ✓ Geotechnical Engineering
- ✓ Transportation Engineering
- Construction Management
- Finite Element Analysis (FEA), etc.
- Engineering Software (ANSYS, ETABS, MATLAB, Revit, etc.)

NOTE:

The solution provided in this document is the intellectual property of Civil Thinking and is protected by copyright. Any reproduction, distribution, or publication of this content, in whole or in part, is strictly prohibited without prior written permission from https://civilthinking.com

Let us help you solve your engineering challenges! 🔊