

Solid Mechanics: Axial Load Diagram, Axial Stress Diagram: Problem 1 solution

Draw a graph of tensile or compressive forces and stresses and calculate the total deformation of a square steel bar with the given data I=4m b=20mm F=5000N and E=210 GPa for the following cases:

Solved by Civ method 2: Using IL = 2 of civilininking

$$\Delta L = \underbrace{\frac{PL}{AE}} = \underbrace{\frac{\sigma_1 \times \frac{L}{2}}{E}} + \underbrace{\frac{\sigma_2 \times \frac{L}{2}}{E}} = \underbrace{\frac{L}{2E} \left(\sigma_1 + \sigma_2 \right) = \frac{4}{2} \times \left(12 \cdot 5 + 37 \cdot 5 \right)}_{\text{Solved by Civil Thinking 2 10 shown in Figure 2 10 shown in$$

Solved by Civil Thinking (https://civilthinking.com)

Solved by Civil Thinking (https://civilthinking.com

This problem was solved by Civil Thinking (https://civilthinking.com)

If you need solutions of **Solid Mechanics/ Strength of Materials problems** or any other **Civil Engineering** subject, contact us at: **solutions@civilthinking.com**

Or submit your problem directly here:

https://civilthinking.com/getproblemsolutions

Subjects We Cover:

- ✓ Structural Analysis
- Fluid Mechanics, Solid Mechanics/Statics, Strength of

NOTE:

The solution provided in this document is the intellectual property of Civil Thinking and is protected by copyright. Any reproduction, distribution, or publication of this content, in whole or in part, is strictly prohibited without prior written permission from https://civilthinking.com.

Materials

☑ Geotechnical Engineering

✓ Transportation Engineering

☑ Construction Management

Finite Element Analysis (FEA), etc.

☑ Engineering Software (ANSYS, ETABS, MATLAB, Revit, etc.)

Let us help you solve your engineering challenges! 🔊

