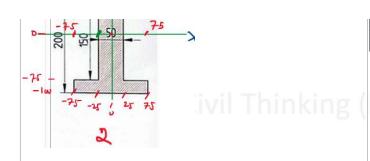
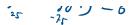

Find the Area, Centroid, Second Moment of Area, Polar Second moment of Area, Product moment of Area and Principal Axes of the I section given, using integration method





Product Moment of Area (about centroid):

 $I_{xy} = \iint ny \, dn \, dy = \int_{-2\pi}^{\pi} n \, dn \, \int_{3\pi}^{3\pi} dy$ $- \int_{-2\pi}^{\pi} n \, dn \, \int_{3\pi}^{3\pi} dy$ $- \int_{-2\pi}^{\pi} n \, dn \, \int_{3\pi}^{3\pi} dy$

ivil Thinking (https://civilthinking.com)

Principal axes:

Principal Angle:

$$\lim_{n \to \infty} 2 < \rho = -\frac{I_{xy}}{\frac{I_{x} - I_{y}}{2}} = \frac{\text{Plubluck}}{\text{Avg. 0.7gr}} = 0$$

Principal MOI:

$$I = \frac{I_{\chi} + I_{\gamma}}{2} \pm \sqrt{\left(\frac{I_{\chi} - I_{\gamma}}{2}\right)^{2} + I_{\chi_{\gamma}}^{2}}$$

$$\left[\frac{87\ 500\ 000}{2} + \sqrt{\left(\frac{71\ 875\ 000 - 15\ 625\ 000}{2}\right)^2 + 0^2}\right]$$

71 875 000

$$\frac{87\ 500\ 000}{2} - \sqrt{\left(\frac{71\ 875\ 000 - 15\ 625\ 000}{2}\right)^2 + 0^2}$$

15 625 000

Cross check Principal Moment of inertia:

71 875 000

This problem was solved by Civil Thinking (https://civilthinking.com)

If you need solutions of **Solid Mechanics/ Strength of Materials** or any other **Civil Engineering** subject, contact us at:

NOTE:

The solution provided in this document is the intellectual property of Civil

solutions@civilthinking.com Thinking and is protected by copyright. Or submit your problem directly here: Any reproduction, distribution, or https://civilthinking.com/getproblemsolutions Other Subjects We Cover: publication of this content, in whole or in part, is strictly prohibited without ✓ Structural Analysis prior written permission from ✓ Fluid Mechanics https://civilthinking.com. ✓ Geotechnical Engineering ✓ Transportation Engineering ✓ Construction Management Finite Element Analysis (FEA), etc. ☑ Engineering Software (ANSYS, ETABS, MATLAB, Revit, etc.) Let us help you solve your engineering challenges! \mathscr{Q}