
Calculate the total deformation due to gravity of a homogeneous rod with length I, made of material with density p and Young's modulus E

$$\int_{0}^{\Delta L} \int_{0}^{L} \frac{w \cdot \frac{L-z}{L} \cdot dx}{AE}$$

$$\Delta L = \frac{W}{A E L} \int_{0}^{L} (L - x) \cdot dx$$

$$\frac{\nabla}{\partial x} = \frac{1}{x} = \frac{1}{x}$$

$$\frac{\Gamma}{M} = \frac{\Gamma - x}{\Gamma} \implies \Gamma^x = M \times \frac{\Gamma}{\Gamma}$$

Solved by Civil Thinking (https://civilthinking.com)
$$\triangle L = \frac{W}{AEL} \left[L_{\varkappa} - \frac{\varkappa}{2} \right]_{R}$$

This problem was solved by Civil Thinking (https://civilthinking.com)

If you need solutions of Solid Mechanics/ Strength of Materials problems or any other Civil Engineering subject, contact us at:

solutions@civilthinking.com

Or submit your problem directly here:

https://civilthinking.com/getproblemsolutions

Other Subjects We Cover:

- ✓ Structural Analysis
- Fluid Mechanics, Solid Mechanics/Statics,
- ✓ Geotechnical Engineering
- ✓ Transportation Engineering
- ✓ Construction Management
- Finite Element Analysis (FEA), etc.

NOTE:

The solution provided in this document is the intellectual property of Civil Thinking and is protected by copyright. Any reproduction, distribution, or publication of this content, in whole or in part, is strictly prohibited without prior written permission from https://civilthinking.com.

Engineering Software (ANSYS, ETABS, MATLAB, Revit, etc.)	
Let us help you solve your engineering challenges!	