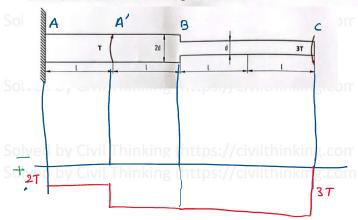

Torsion in Shafts problem Solution


Calculate the maximum value of the torque T which can be applied to the shafts shown in the figures below and the following data:

diameter d = 50 mm, max permited sheer stress k_t = 80MPa, length I = 500 mm, Kirchhoff's module G=85 GPa, also calculate the total twist angle for each shaft.

Calculate the maximum value of the torque T which can be applied to the shafts shown in the figures below and the following data:

diameter d = 50 mm, max permited sheer stress k_s = 80MPa, length $\,$ I = 500 mm, Kirchhoff's module G=85 GPa, also calculate the total twist angle for each shaft.

Solved by Civil Thinking (https://civilthinking.com

Solved by Civil Thinking (https://civilthinking.com)

$$\frac{\gamma}{2} = \frac{\gamma}{1} = \frac{\zeta_{0}}{1} \Rightarrow \frac{\gamma}{2} = \frac{\gamma}{1}$$

$$\frac{\gamma}{2} = \frac{\gamma}{1} = \frac{\zeta_{0}}{1} \Rightarrow \frac{\gamma}{2} = \frac{\gamma}{1}$$

$$\frac{\beta_{0} \times 10^{4}}{1} = \frac{37}{11 \times (\frac{0.05}{2})^{4}}$$

$$\Rightarrow 7 = 654.5 \text{ N·m} = 0$$

$$\Rightarrow 7 = 654.5 \text{ N·m} = 0$$

$$\Rightarrow 7 = 5236 \text{ N·m} = 0$$

$$\phi_{AB} = \phi_{AA'} + \phi_{A'B} = \frac{TL}{c_0 T} + \frac{TL}{c_0 T}$$

$$\phi_{AB} = \frac{1}{c_0 T} \left(\frac{T_{AA'} + T_{A'B}}{T_{AB'}} \right) = \frac{c_0 \cdot S}{\delta J \times 0.05} \left(\frac{27 + 37}{4} \right)$$

$$\phi_{AB} = \frac{L}{c_0 T} \left(\frac{T_{AA'} + T_{A'B}}{T_{A'B}} \right) = \frac{c_0 \cdot S}{\delta J \times 0.05} \left(\frac{27 + 37}{4} \right)$$

$$\phi_{AB} = \frac{1}{c_0 T} \left(\frac{T_{AA'} + T_{A'B}}{T_{A'B}} \right) = \frac{c_0 \cdot S}{\delta J \times 0.05} \left(\frac{27 + 37}{4} \right)$$

$$\phi_{AB} = \frac{3T \times 2 \times 0.5 \times 3}{\delta 5 \times 10^7 \times \pi \times 0.025} = \frac{3T \times 2 \times 0.5 \times 3}{\delta 5 \times 10^7 \times \pi \times 0.025} = \frac{3T \times 2 \times 0.5 \times 3}{\delta 5 \times 10^7 \times \pi \times 0.025} = \frac{3T \times 2 \times 0.5 \times 3}{\delta 5 \times 10^7 \times \pi \times 0.025} = \frac{3T \times 2 \times 0.5 \times 3}{\delta 5 \times 10^7 \times \pi \times 0.025} = \frac{3T \times 2 \times 0.5 \times 3}{\delta 5 \times 10^7 \times \pi \times 0.025} = \frac{3T \times 2 \times 0.5 \times 3}{\delta 5 \times 10^7 \times \pi \times 0.025} = \frac{3T \times 2 \times 0.5 \times 3}{\delta 5 \times 10^7 \times \pi \times 0.025} = \frac{3T \times 2 \times 0.5 \times 3}{\delta 5 \times 10^7 \times \pi \times 0.025} = \frac{3T \times 2 \times 0.5 \times 3}{\delta 5 \times 10^7 \times \pi \times 0.025} = \frac{3T \times 2 \times 0.5 \times 3}{\delta 5 \times 10^7 \times \pi \times 0.025} = \frac{3T \times 2 \times 0.5 \times 3}{\delta 5 \times 10^7 \times \pi \times 0.025} = \frac{3T \times 2 \times 0.5 \times 3}{\delta 5 \times 10^7 \times \pi \times 0.025} = \frac{3T \times 2 \times 0.5 \times 3}{\delta 5 \times 10^7 \times \pi \times 0.025} = \frac{3T \times 2 \times 0.5 \times 3}{\delta 5 \times 10^7 \times \pi \times 0.025} = \frac{3T \times 2 \times 0.5 \times 3}{\delta 5 \times 10^7 \times \pi \times 0.025} = \frac{3T \times 2 \times 0.5 \times 3}{\delta 5 \times 10^7 \times \pi \times 0.025} = \frac{3T \times 2 \times 0.5 \times 3}{\delta 5 \times 10^7 \times \pi \times 0.025} = \frac{3T \times 2 \times 0.5 \times 3}{\delta 5 \times 10^7 \times \pi \times 0.025} = \frac{3T \times 2 \times 0.5 \times 3}{\delta 5 \times 10^7 \times \pi \times 0.025} = \frac{3T \times 2 \times 0.5 \times 3}{\delta 5 \times 10^7 \times \pi \times 0.025} = \frac{3T \times 2 \times 0.5 \times 3}{\delta 5 \times 10^7 \times \pi \times 0.025} = \frac{3T \times 2 \times 0.5 \times 3}{\delta 5 \times 10^7 \times \pi \times 0.025} = \frac{3T \times 2 \times 0.5 \times 3}{\delta 5 \times 10^7 \times \pi \times 0.025} = \frac{3T \times 2 \times 0.5 \times 3}{\delta 5 \times 10^7 \times \pi \times 0.025} = \frac{3T \times 2 \times 0.5 \times 3}{\delta 5 \times 10^7 \times \pi \times 0.025} = \frac{3T \times 2 \times 0.5 \times 3}{\delta 5 \times 10^7 \times \pi \times 0.025} = \frac{3T \times 2 \times 0.5 \times 3}{\delta 5 \times 10^7 \times \pi \times 0.025} = \frac{3T \times 2 \times 0.5 \times 3}{\delta 5 \times 10^7 \times \pi \times 0.025} = \frac{3T \times 2 \times 0.5 \times 3}{\delta 5 \times 10^7 \times 10^$$

This problem was solved by Civil Thinking (https://civilthinking.com)

If you need solutions of **Solid Mechanics/ Strength of Materials problems** or any other **Civil Engineering** subject, contact us at: **solutions@civilthinking.com**

Or submit your problem directly here:

Subjects We Cover:

- ✓ Structural Analysis
- Fluid Mechanics, Solid Mechanics/Statics, Strength of Materials
- ✓ Geotechnical Engineering
- ✓ Transportation Engineering
- ✓ Construction Management
- Finite Element Analysis (FEA), etc.
- ✓ Engineering Software (ANSYS, ETABS, MATLAB, Revit, etc.)

Let us help you solve your engineering challenges! \mathscr{Q}

NOTE:

The solution provided in this document is the intellectual property of Civil Thinking and is protected by copyright. Any reproduction, distribution, or publication of this content, in whole or in part, is strictly prohibited without prior written permission from https://civilthinking.com

