Hydrodynamics problem solved using Modified Bernoulli's Equation

Oil with a viscosity of $v=0.6\cdot 10^{-4}\frac{m^2}{s}$ is delivered from a pump to a lubricated sliding surface through a tube with a diameter d=0.01m and a length l=6m. For what pressure difference will a volume flow rat $Q=50\frac{cm^2}{s}$ be provided? The density of the oil is $\rho=890\frac{kg}{m^2}$.

Solution!

The hydraulic head loss is defined as the ratio of the pressure drop to the specific weight of the fluid (Darcy's formula):

Solved by
$$R_{e} = \frac{\Delta p}{\gamma} = \lambda \frac{l}{d} \frac{u^{2}}{2g}$$

(11.1)

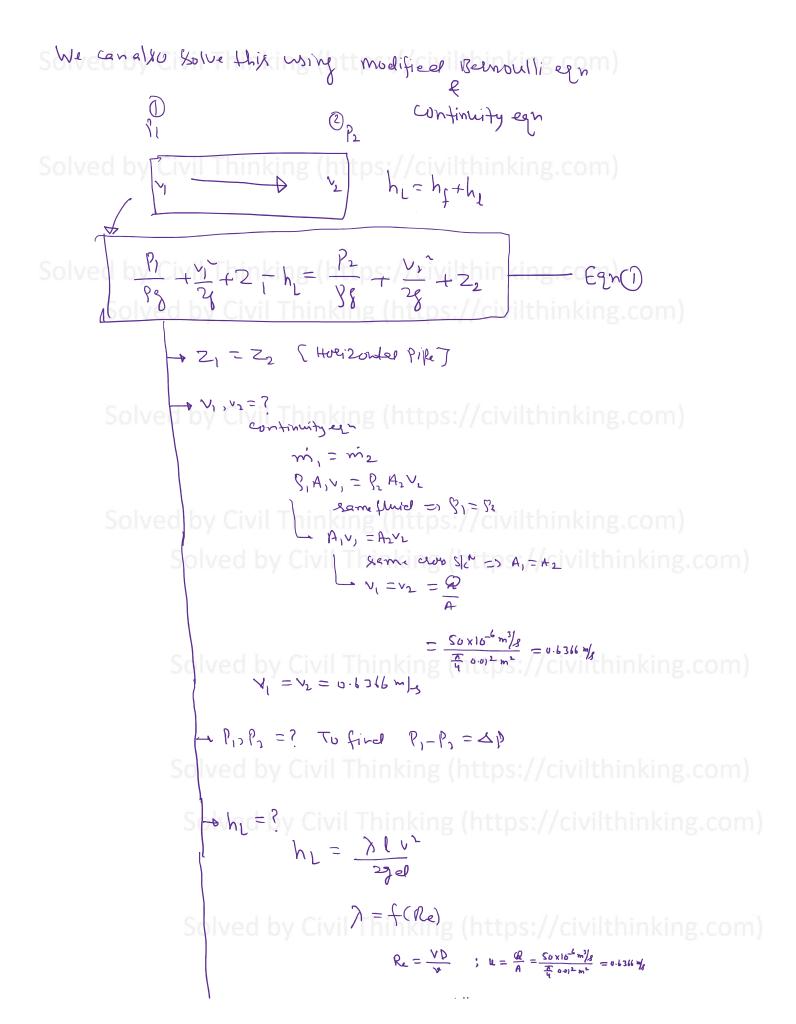
Solved by $R_{e} = \frac{\Delta p}{\gamma} = \lambda \frac{l}{d} \frac{u^{2}}{2g}$

(11.1)

Solved by $R_{e} = \frac{VD}{\gamma}$ ing; $l_{e} = \frac{Q}{A} = \frac{So \times 10^{-6} \text{ m}^{3}/g}{\frac{T}{4} \text{ o·o})^{2} \text{ m}^{2}} = 0.6366 \text{ m/s}$

Solved by Civil Thinking
$$6.6 \times 10^{-9} \text{ m/s}$$
 = $106.1 \angle 2320$
 $\Rightarrow \text{lemined flow}$

$$Solvey c_{\gamma} = \frac{64}{R_e} = \frac{64}{106.1} = 0.6032$$
 civilthinking.com)


$$\triangle P = \lambda \frac{L}{d} \frac{u^{2}}{2g} Y$$

$$\Rightarrow \Delta P = 65268.83 Pa$$

$$= 65.3 KPa$$

$$\Delta P = 65.3 KPa$$

$$\Delta P$$

$$R_{e} = \frac{VD}{V} \quad ; \quad u = \frac{Q}{A} = \frac{So \times 10^{-6} \text{ m}^{3}/g}{\frac{A}{4} \text{ a.o.} 1^{2} \text{ m}^{2}} = 0.636 \text{ m}^{4}$$

$$R_{e} = \frac{0.6366 \times 10^{-4} \text{ m}^{3}}{0.6 \times 10^{-4} \text{ m}^{3}} = 106.1 \angle 2.320$$

$$\Rightarrow \lambda = \frac{64}{R_{e}} = \frac{64}{106.1} = 0.6032$$

$$\Rightarrow \lambda = \frac{64}{R_{e}} = \frac{64}{106.1} = 0.6032$$

$$\Rightarrow \lambda = \frac{6.6032 \times 6 \text{ m} \times 0.6366}{2 \times 9.86 \times 0.01} = 7.4756 \text{ m}$$

$$\frac{P_1}{P_3} + \frac{v_1}{7} + \frac{7}{7} - h_1 = \frac{P_2}{98} + \frac{v_1^{h_1}}{78} + \frac{1}{12}$$
(copied again for lefer.

Eqn () Simplifies to: (18 1000)

Solved
$$\frac{P_1 - P_2}{S_3}$$
 | $\frac{P_1}{S_2}$ | $\frac{P_2}{S_3}$ | $\frac{P_1}{S_3}$ | $\frac{P_2}{S_3}$ | $\frac{P_1}{S_3}$ | $\frac{P_2}{S_3}$ | $\frac{P_1}{S_3}$ | $\frac{P_2}{S_3}$ | $\frac{P_2}{S_3}$ | $\frac{P_1}{S_3}$ | $\frac{P_2}{S_3}$ | $\frac{P_1}{S_3}$ | $\frac{P_2}{S_3}$ | $\frac{P_2}{S_3}$ | $\frac{P_1}{S_3}$ | $\frac{P_2}{S_3}$ |

Sol=
$$\frac{2}{9}$$
 $\frac{2}{9}$ $\frac{1}{2}$ (https://civilthinking.com)

Solve
$$\Rightarrow \Delta P = \left(\frac{\sqrt{2}}{2g} + h_L\right) \times gg$$

$$So \Rightarrow \Delta P = \left(\frac{6.636b}{2g} + 7.4756 \text{ m}\right) \times 890 \times 9.81$$

Solved by Civil Thinking (https://civilthinking.com)

This Fluid Mechanics problem was solved by Civil Thinking (https://civilthinking.com)

If you need solutions of Fluid Mechanics questions or any other Civil Engineering subject questions, contact us at:

solutions@civilthinking.com

Or submit your problem directly here:

NOTE:

The solution provided in this document is the intellectual property of Civil Thinking and is protected by copyright. Any reproduction, distribution, or publication of this content, in whole or

Me also offer Tutoring in Fluid Mechanics in 1 on 1 live sessions using Zoom meeting	in part, is strictly prohibited without prior written permission from
Register using below link for our online tutorials:	https://civilthinking.com.
https://civilthinking.com/book-online-class/	
In case the class-booking form isn't working, kindly email us at:	
fluidmechanics@civilthinking.com	
Other Subjects that we cover:	
✓ Structural Analysis	
✓ Mechanics of Materials/ Strength of Materials/ Solid Mechanics	
✓ Engineering Mechanics/ Statics	
✓ Geotechnical Engineering	
✓ Transportation Engineering	
✓ Construction Management	
Finite Element Analysis (FEA)	
☑ Engineering Software (ANSYS, ETABS, MATLAB, Revit, SAP2000,	
PYTHON for Civil Engineers, etc.)	

Let us help you solve your engineering challenges!