Question: The bond between reinforcing bars and concrete is tested by means of a "pull-out test" of a bar embedded in concrete (see figure). A tensile force p is applied to the end of the bar, which has diameter d and embedment length L. If P= 18 kN, d=12 mm, and 300 mm, what average shear stress is developed between the steel and concrete?

 $\begin{aligned} \mathcal{T}_{Avg} &= \frac{P}{A} \\ P = 10 \times N \\ A = T d L \\ el = 12mm \\ L = 300 \text{ mm} \end{aligned}$ $\Rightarrow A = T \times 12 \times 300 = 11309.733 \text{ mm}^2 \\ \Rightarrow \mathcal{T}_{Avg} &= \frac{18 \text{ KN}}{11309.733 \text{ mm}^2} = 0.00159 \text{ KN/mm}^2 = 1.59 \text{ N/mm}^2 \end{aligned}$

This problem was solved by Civil Thinking (<u>https://civilthinking.com</u>)	NOTE:
If you need solutions of Strength of Materials/ Mechanics of Materials	The solution provided in this document
Questions or any other Civil Engineering subjects, contact us at:	is the intellectual property of Civil
solutions@civilthinking.com	Thinking (https://civilthinking.com)
Or submit your problem directly here:	and is protected by copyright. Any
<u>https://civilthinking.com/getproblemsolutions</u>	reproduction, distribution, or
Other Subjects We Cover:	publication of this content, in whole or
Structural Analysis	in part, is strictly prohibited without
Fluid Mechanics	prior written permission from
Geotechnical Engineering	https://civilthinking.com.
✓ Transportation Engineering	
Construction Management	
Finite Element Analysis (FEA), etc.	
Engineering Software (ANSYS, ETABS, MATLAB, Revit, SAP2000, AutoCAD,	
Staad Foundation Advanced, Staad.Pro, etc.)	
Let us help you solve your engineering challenges! 🜮	