
9–2. Determine the stress components acting on the inclined plane *AB*. Solve the problem using the method of equilibrium described in Sec. 9.1.

Solution:

Solved by Civil Thinking (https://civilthinking.com)

20 SACOS 300 Furce = Stress X Area

Solved by Civil Thinking 652Acos30° Civil thinking com

Solved by Civil This A A XSin36° E Com

$$+72F_{y}=0$$
:

 $T_{y}=0$:

 T

Solved by Civil Thinking (https://civilthinking.com)

This problem was solved by Civil Thinking (https://civilthinking.com)

If you need solutions of **Strength of Materials / Mechanics of Materials Questions** or any other **Civil Engineering** subjects, contact us at:

solutions@civilthinking.com

Or submit your problem directly here:

https://civilthinking.com/getproblemsolutions

Other Subjects We Cover:

- ✓ Structural Analysis
- ✓ Fluid Mechanics
- ✓ Geotechnical Engineering
- ✓ Transportation Engineering

NOTE:

The solution provided in this document is the intellectual property of Civil Thinking (https://civilthinking.com) and is protected by copyright. Any reproduction, distribution, or publication of this content, in whole or in part, is strictly prohibited without prior written permission from https://civilthinking.com.

Construction Management	
✓ Construction Management	
Finite Element Analysis (FEA)	
☑ Engineering Software (ANSYS, ETABS, MATLAB, Revit)	
Let us help you solve your engineering challenges! 🜮	