

Torsion in Shafts. Question 5-64 Solution

Sunday, 16 March, 2025 06:17 PM

*5-64. The device serves as a compact torsion spring. It is made of A-36 steel and consists of a solid inner shaft CB which is surrounded by and attached to a tube AB using a rigid ring at B. The ring at A can also be assumed rigid and is fixed from rotating. If the allowable shear stress for the material is T_{allow} =12 ksi and the angle of twist at C is limited to 3⁰, determine the maximum torque T that can be applied at the end C.

*5-64. The device serves as a compact torsion spring. It is made of A-36 steel and consists of a solid inner shaft *CB* which is surrounded by and attached to a tube *AB* using a rigid ring at *B*. The ring at *A* can also be assumed rigid and is fixed from rotating. If the allowable shear stress for the material is $\tau_{\text{allow}} = 12$ ksi and the angle of twist at *C* is limited to $\phi_{\text{allow}} = 3^\circ$, determine the maximum torque *T* that can be applied at the end *C*.

Solved by Civil Thinking (https://civilthinking.com)

Twist check!
$$\int_{C} = 3^{\circ} \times \frac{\pi}{180} = \oint_{CB} + \oint_{AA} = \frac{T \times 24}{11 \times 10^{3} \times \frac{\pi}{2} \cdot 05^{4}} + \frac{T \times 12}{11 \times 10^{3} \times \frac{\pi}{2} (1 - 0.75^{4})}$$

=) T=2.253 Kipind

This problem was solved by Civil Thinking (<u>https://civilthinking.com</u>)	NOTE:
If you need solutions for Strength of Materials or any other Civil Engineering	The solution provided in this document
subject, contact us at:	is the intellectual property of Civil
solutions@civilthinking.com	Thinking and is protected by copyright.
Or submit your problem directly here:	Any reproduction, distribution, or
<u>https://civilthinking.com/getproblemsolutions</u>	publication of this content, in whole or
Other Subjects We Cover:	in part, is strictly prohibited without
Structural Analysis	prior written permission from
Fluid Mechanics	https://civilthinking.com

Geotechnical Engineering	
Transportation Engineering	
Construction Management	
Finite Element Analysis (FEA)	
Engineering Software (ANSYS, ETABS, MATLAB, Revit, SAP2000, etc.)	
Let us help you solve your engineering challenges! 🔗	