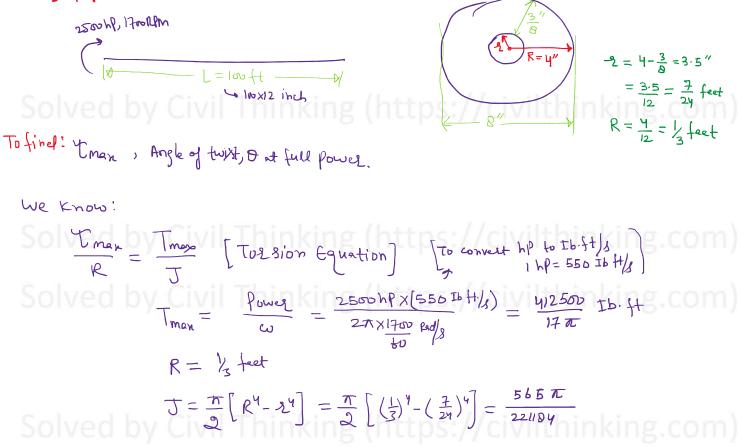
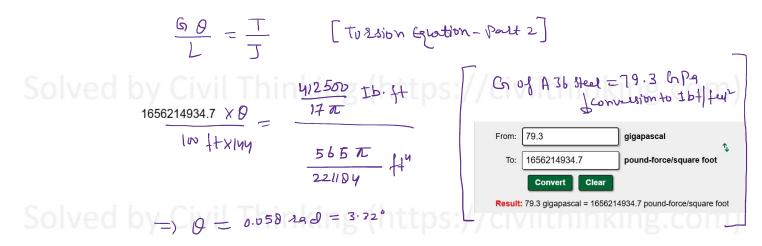

Torsion in Shafts. Question 5-50 Solution


Friday, 14 March, 2025 05:32 PM

5-50. The hydrofoil boat has an A-36 steel propeller shaft that is 100 ft long. It is connected to an in-line diesel engine that delivers a maximum power of 2500 hp and causes the shaft to rotate at 1700 rpm. If the outer diameter of the shaft is 8 in. and the wall thickness is -g in., determine the maximum shear stress developed in the shaft. Also, what is the "wind up," or angle of twist in the shaft at full power?

5–50. The hydrofoil boat has an A-36 steel propeller shaft that is 100 ft long. It is connected to an in-line diesel engine that delivers a maximum power of 2500 hp and causes the shaft to rotate at 1700 rpm. If the outer diameter of the shaft is 8 in. and the wall thickness is $\frac{3}{8}$ in., determine the maximum shear stress developed in the shaft. Also, what is the "wind up," or angle of twist in the shaft at full power?



K J
$$T_{\text{max}} = \frac{f_{0} weg}{c_{0}} = \frac{2500 \text{ hP} \times (550 \text{ Ib} + 1/s)}{271 \times 1700} = \frac{412500}{17\pi} \text{ Ib} \cdot \text{ft}$$

 $R = \frac{1}{3} \text{ feet}$
 $J = \frac{\pi}{2} \left[R^{4} - 2^{4} \right] = \frac{\pi}{2} \left[\left(\frac{1}{3} \right)^{4} - \left(\frac{2}{24} \right)^{4} \right] = \frac{565\pi}{221104}$

$$\frac{\sum_{max}}{\sqrt{3}} = \frac{\frac{412500}{14\pi}}{\frac{565\pi}{221184}} = \sum_{max} = 320818.42 \text{ Ib}/42 = 2.83 \text{ Ksi}$$

lets find angle of twilst, 0: We Know:

Solved by Civil Thinking (https://civilthinking.com)

Solved by Civil Thinking (https://civilthinking.com)

This problem was solved by Civil Thinking (<u>https://civilthinking.com</u>) If you need solutions for Strength of Materials or any other Civil Engineering subject, contact us at: solutions@civilthinking.com Or submit your problem directly here: Mttps://civilthinking.com/getproblemsolutions Other Subjects We Cover: Structural Analysis Fluid Mechanics	NOTE: The solution provided in this document is the intellectual property of Civil Thinking and is protected by copyright. Any reproduction, distribution, or publication of this content, in whole or in part, is strictly prohibited without prior written permission from https://civilthinking.com.
 Geotechnical Engineering Transportation Engineering Construction Management Finite Element Analysis (FEA) Engineering Software (ANSYS, ETABS, MATLAB, Revit) Let us help you solve your engineering challenges! 🔊 	