5-42. The A-36 solid tubular steel shaft is 2 m long and has an outer diameter of 60 mm. It is required to transmit 60 kW of power from the motor M to the pump P. Determine the smallest angular velocity the shaft can have if the allowable shear stress is T_{allow} = 80 MPa.

5–42. The A-36 solid tubular steel shaft is 2 m long and has an outer diameter of 60 mm. It is required to transmit 60 kW of power from the motor M to the pump P. Determine the smallest angular velocity the shaft can have if the allowable shear stress is $\tau_{\text{allow}} = 80$ MPa.

Solution :-

Solved by Civil Thinking (https://civilthinking.com)

Solved by Civil Thinking (https://civilthinking.com)

This problem was solved by Civil Thinking (<u>https://civilthinking.com</u>)	NOTE:
If you need solutions for Strength of Materials or any other Civil Engineering	The solution provided in this document
subject, contact us at:	is the intellectual property of Civil
solutions@civilthinking.com	Thinking and is protected by copyright.
Or submit your problem directly here:	Any reproduction, distribution, or
https://civilthinking.com/getproblemsolutions	publication of this content, in whole or
Other Subjects We Cover:	in part is strictly prohibited without
Structural Analysis	nrior written permission from
Fluid Mechanics	https://civilthinking.com.
🗹 Geotechnical Engineering	
✓ Transportation Engineering	
Construction Management	
Finite Element Analysis (FEA)	
Engineering Software (ANSYS, ETABS, MATLAB, Revit)	
Let us help you solve your engineering challenges! 🔗	