5-39. The solid steel shaft DF has a diameter of 25 mm and is supported by smooth bearings at D and E. It is coupled to a motor at F, which delivers 12 kW of power to the shaft while it is turning at 50 rev/s. If gears A, B, and C remove 3 kW, 4 kW, and 5 kW respectively, determine the maximum shear stress developed in the shaft within regions CF and BC. The shaft is free to turn in its support bearings D and E.

5–39. The solid steel shaft DF has a diameter of 25 mm and is supported by smooth bearings at D and E. It is coupled to a motor at F, which delivers 12 kW of power to the shaft while it is turning at 50 rev/s. If gears A, B, and C remove 3 kW, 4 kW, and 5 kW respectively, determine the maximum shear stress developed in the shaft within regions CF and BC. The shaft is free to turn in its support bearings D and E.

Trax,BC = 70/N·m; Trax, Cf 120/T To find: Trax, Rc, Trax, Cf Let's about Torision equations to BC & Cf:

Let's apply tousion equations to BC & Cf: $\frac{T}{R} = \frac{T}{J}$

$$Fn BC:$$

$$\frac{T_{BC}}{R_{Be}} = \frac{T}{J_{BC}} \implies \frac{T_{BC}}{\frac{1}{2}} = \frac{70/\pi}{\frac{1}{2}(\frac{0.025}{2})^{4}} \quad [::R = \frac{\text{diametel}}{2} = \frac{25mm}{2} = \frac{0.0250}{2} \text{ m}]$$

$$= T_{BC} = \frac{71680500}{\pi^2} N_{m2} = 7.26 M Pa$$

In CF:

$$\frac{\nabla_{cf}}{2} = \frac{120}{2} / \pi = T_{cf} = \frac{122}{5} \frac{0.025}{7} / \gamma = T_{cf} = \frac{122}{5} \frac{0.025}{7} / \gamma = \frac{12.05}{7} / \gamma = 12.05 MP_{cf}$$

This problem was solved by Civil Thinking (<u>https://civilthinking.com</u>)	NOTE:
If you need solutions for Strength of Materials or any other Civil	The solution provided in this
Engineering subject, contact us at:	document is the intellectual property
solutions@civilthinking.com	of Civil Thinking and is protected by
Or submit your problem directly here:	copyright. Any reproduction,
<u>https://civilthinking.com/getproblemsolutions</u>	distribution, or publication of this
Other Subjects We Cover:	content, in whole or in part, is strictly
Structural Analysis	prohibited without prior written
✓ Fluid Mechanics	permission from
Geotechnical Engineering	https://civilthinking.com
Transportation Engineering	
Construction Management	
Finite Element Analysis (FEA)	
Engineering Software (ANSYS, ETABS, MATLAB, Revit)	
Let us help you solve your engineering challenges! 🜮	