3-15 The absolute pressure in water at a depth of 8 m is read to be 175 kPa. Determine (a) the local atmospheric pressure, and (b) the absolute pressure at a depth of 8 m in a liquid whose specific gravity is 0.78 at the same location.

3-15 The absolute pressure in water at a depth of 8 m is read to be 175 kPa. Determine (a) the local atmospheric pressure, and (b) the absolute pressure at a depth of 8 m in a liquid whose specific gravity is 0.78 at the same location.

8m
$$P_{abs} = P_{atm} + S_{3}h$$

$$175 \times 10^{3} = P_{atm} + 1000 \times 9.81 \times 8$$

$$= P_{atm} = 96520 Pe = 96.5 \times 620$$

(b):
$$C_{1} = 0.78$$
 $P_{abs} = 99h + P_{abm}$
 $=) P_{abs} = 0.78 \times 9.81 \times 8m + 96520$
 $P_{abs} = 780 \times 9.81 \times 8 + 96520 = 157739.4$
 $=) P_{abs} = 157.7 \times 98$

1

This problem was solved by Civil Thinking (https://civilthinking.com)
If you need solutions for **Fluid Mechanics** or any other **Civil Engineering** subject, contact us at:

solutions@civilthinking.com

Or submit your problem directly here:

https://civilthinking.com/getproblemsolutions

Other Subjects We Cover:
✓ Structural Analysis
✓ Fluid Mechanics
✓ Geotechnical Engineering
✓ Transportation Engineering
✓ Construction Management
Finite Element Analysis (FEM/FEA)
☑ Engineering Software (ANSYS, ETABS, MATLAB, Revit,
STAAD.Pro, STAAD Foundation Advanced, SAP2000, etc)
Let us help you solve your engineering challenges! 🏈