3-12 The water in a tank is pressurized by air, and the pressure is measured by a multifluid manometer as shown in Fig. P3-12. Determine the gage pressure of air in the tank if $h_1 = 0.4$ m, $h_2 = 0.6$ m, and $h_3 = 0.8$ m. Take the densities of water, oil, and mercury to be 1000 kg/m³, 850 kg/m³, and 13,600 kg/m³, respectively.

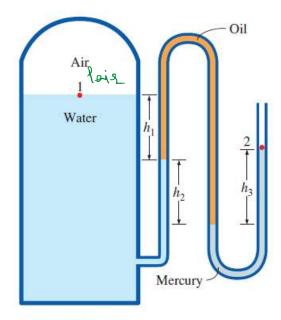


FIGURE P3-12

$$P_{aix} + P_{o}gh_{1} + P_{g}gh_{2} = 0$$

$$= P_{aix} + (850 \times 9.81 \times 0.4) + (1000 \times 9.81 \times 0.6) - (13600 \times 9.81 \times 0.8)$$

$$= 0$$

$$= P_{aix} = 97511.4 Pa = 97.5 KPa$$

Answered by Zulfy Rajab
Engineer at Civil Thinking

55/03/2025

This problem was solved by Civil Thinking (https://civilthinking.com)
If you need solutions for **Fluid Mechanics** or any other **Civil Engineering** subject, contact us at:

solutions@civilthinking.com

Or submit your problem directly here:

https://civilthinking.com/getproblemsolutions

Other Subjects We Cover:

- Structural Analysis
- ✓ Fluid Mechanics
- ☑ Geotechnical Engineering
- ✓ Transportation Engineering

Construction Management
Finite Element Analysis (FEM/FEA)
Engineering Software (ANSYS, ETABS, MATLAB, Revit,
STAAD.Pro, STAAD Foundation Advanced, SAP2000, etc)
Let us help you solve your engineering challenges! 🏈